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Design of an Observer for Quantized Output Systems Using
Orthogonal Projection

Joono Sur* and Young-il Park**
(Received October 20, 1997)

This paper presents a state observer for linear systems with quantized outputs. The observer

employs an orthogonal projection operation at quantizer output discontinuities to enhance its

convergence rate for quantized output systems. Although there may be a significant quantization

error on average, it is possible to design observers with an exponentially stable tracking error.

We explain how to construct the orthogonal projection operation in a Hilbert space and prove

the stability of the proposed observer by using the Lyapunov second method. In order to assess

the value of the orthogonal projection operation in the proposed observer, the simple motor

system with an optical encoder has been analyzed numerically.
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1. Introduction

Systems whose outputs take on discrete values

are called quantized output systems. Systems with

quantized outputs are common in the area of

digital control where all information is represent­

ed using a quantized value rather than a continu­

ous-Ievel. In all digital plants, measured outputs

are quantized prior to a control computation. In

most cases, the quantization error is small

compared with the system noise and is justifiably

ignored. However, there are exceptions. For

example, quantization is an issue in precision

motion control systems employing motor-encoder

pairs, in systems with limited switch outputs, or in

any systems where continuous states are measured

by digital means. On the other hand, careful

modeling of quantization is not an issue in com­

munication systems that operate at high noise

levels. We show that the incorporation of knowl­

edge of the quantization nonlinearity leads to an

improvement in t~e state estimate with a minor

increase in observer complexity. Much of the
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work on quantization in control systems seeks to

simply bound the performance degradation

caused by the use of a quantizer. Curry (1970)

has developed maximum likelihood estimates for

static linear systems driven by Gaussian noise and

having quantized outputs. The extension to linear

dynamic systems appears intractable analytically,

however, Curry does derive approximate formu­

lae for state estimates, work well with small

quantizer steps. Another approach proposed by

Schewppe (1968) propagates an ellipsoidal set

which approximates the true system state by con­

tainment. This method only requires the knowl­

edge of bounds on inputs, and bounds on output

measurement (quantizer) error; the performance

calculation is intractable analytically in this case

as well. More recently, Miller, Michel, and Farrel

(1989) established useful bounds on tracking

performance in digitally controlled plants, where

there are numerical quantization in the digital

computation of the control input. Delchamp, in

(Delchamps, 1988, 1989a, 1989b), takes a new

and inovative approach to dealing with quantiza­

tion. Rather than treating quantization as a

bounded disturbance, his method treats quantiza­

tion exactly in the linear dynamic case, and estab­

lishes conditions under which the uncertainty in

the system state tends to zero (as measured by
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Fig. 1 Round-off quantization nonlinearity.

The state estimation error dynamics of the

linear observer with quantizer is given by
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e=Ae-L(yq-y), e(to)=eo
=Ae-L(y+Llyq- y)
= (A - LC) e - LLlYq (6)

£=Ax+Bu+L(yq-y), x(to)=xo (4)
y=Cx (5)

outputs.

where e=x-x, Llyq=yq-y, and L is designed

so that (A - LC) is Hurwitz. Thus there exists an

M =MT>0, Q= QT >0 such that (A - LC) TM
+M(A-LC)=-Q. V(t, e)=eTMe is a
Lyapunov function for the standard Luenberger

observer. The time derivative of the Lyapunov

function is

We have taken the feedthough term 0=0 for

simplicity although it is straightforward to incor­

porate. The quantizer nonlinearity Q[ • ] in Eq.

(3) is taken to be the round-off nonlinearity of

Fig. I. A typical approach to designing an

observer for the system above is to simply ignore

the quantizer. For example, a Luenberger

observer has the form

differential entropy). The approach uses the sys­

tem input to optimize the information acquired

on the state, but mixes approaches aimed at

addressing information. Therefore, simultaneous

performance tracking now appear as a possibility.

More recent works by Rotea and Williamson

(1994) is representative of a broad class of prob­

lems focused on choosing state-space realization

of discrete-time linear time-invariant systems

which perform well in computer implementations.

These methods effectivly treat numerical round

-off quantization as a noise source and address

the scaling of internal signals to optimize compet­

ing objectives of a) low sensitivity to quantiza­

tion and b) the desire for infrequent numerical

overflow. The approach contrasts with ours

where quantization is modeled as a nonlinearity,

rather than a noise source. More recent work

addressing chaos in feed-back systems with

quantization is done by Steppan and Haller

(1996). Previous works are fundamental to the

feedback problem in discrete time systems; where­

as, we focus on the continuous time problem and
observers.

In contrast to the aforementioned approaches,

we attempt, in this paper, an exact analysis of the

quantization. Quantization is a deterministic non­

linearity as in (Sur and Paden, 1996, 1997) and,

by treating it as such, we obtain excellent state

tracking performance in an observer. This exact

treatment of quantization nonlinearity is similar

in spirit to the work of Delchamps (1988, 1989a,

1989b) .

This paper has the following format: in Sec. 2,

we motivate and introduce the observer for the

systems with quantized outputs. In Sec. 3, we

modify existing Lyapunov theory to accommo­

date the discontinuous updates used in our

observer, and prove the error convergence for the

case of stable and unstable plants. Sec. 4 contains

simulation results for the stable and unstable

plant cases. Our conclusions are made in Sec. 5.

2. Problem Statement

We consider the observer design problem for a

SISO linear time-invariant system with quantized

Since quantizer with unit width has quantization

error as ILlyql ~ 1/2< co, then for II ell sufficiently
large the sign of V will be dominated by the sign

of the term - eTQe which has been chosen to be
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3. The Projection Algorithm

y=M-1CTZ

yTMr: = ZTC (M T)-IMx

=zTCx

=0

Fig. 2 The projection step in the observer.

yTMx=O, V xEN(C)

=Cx
=zTCM-TMx

y™=zTCM-TM

y=M-1CTZ

Thus, yEN(C)l-M. Let yEN(C)l-M, then we

have

Thus, yE R (M- 1CT
) . Therefore. there exists a

estimation error asymptotically. In our observer

design, the discontinuities play a critical role

since the only cases that y is measured exactly is

at discontinuities. At other case, yq differs from y
up to 1/2. To see how the quantizer discontinu­

ities can be used to estimate the state .i, consider
Fig. 2. In this figure the state space is represented

as the direct sum of range of C T and the nullspace

of C. A full rank matrix I' is chosen such that R
(r) =N(C). In addition, let M satisfy the

Lyapunov equation ATM +MA = - I, and define

a natural inner product on the state space by <x,
Y)M=xTMy. In this Hillbert space, the orth­

ogonal projection matrix onto N (C) is given by

P=C(CMC)-ICM.

Lemma 1 Let M = M T >O. Then there exists a
vector C such that N(C)l-M=R(M-1CT).

Proof: Let N(C) ={xERnICx= O}, then
there exists a N(C)l-M={yEN(C)l-SI(x, Y)s=

0, VxEN(C)}. Let yER(M-1CT), then there

exists a zE R" such that

(8)

(9)

(10)

(II)

IIMLII Ilell ;;:::minAi (Q) IIel12

However, since Q is a real, symmetric positive

definite matrix, it is known that eTQe;;::: min Ai

(Q) IIel12 for i= I, ... , n: thus the inequality of Eq.
(8) is implied by

A simplified more conservative expression which

assumes the inequality of (9) is obtained by the

use of a basic inequality involving the norms of

matrices, as

It is evident that if the equality sign is used in Eq.

(10), the resulting expression for II ellmax = p is
upper bounded on the domain of uniform bound­

ness defined as

Equation (II) has two real solution for o, only

one of which satisfy p .IIMLII. Therefore
mmtl;(Q) ,

there is no guarantee that the error of state estima­

tion goes to zero as t -+ CX) if there exist quantized

error. The trajectories of most points are periodic

and dense in the ball Bp={eEBp: V(e, t) >0, e

$.Bp : V(e, t) ~O}.

Herein a different algorithm is introduced for

designing an observer which can eliminate an

negative definite. Therefore, there exists a region

II ell ~ p < CX) which is the complement of a com­
pact sets of points enclosing the origin, within

which V is negative and therefore, the solution of

system (6) is uniformly bounded. The estimate of

the domain of uniform boundedness for the solu­

tion e (t) of system (6) is readily obtained from

Eq. (7), where ILlYqlmax~ 1/2, as follow: The
worst contribution to the error of estimation,

when the quantization LlYq has the maximum

value, ILlYqlmax~ 1/2, and has a sign such that the
term 2e™LLlyq in Eq. (7) is positive. The

requirement on e such that V should remain

negative under this condition is obtained from the

Eq. (7) as



520 Joono Sur and Young-if Park

vector C such that N(C)l-M=R(M-1CT).

The corresponding projection onto <., .>M, N
(C)l-M=R(M-IC) is I-P. At a quantizer transi­

tion, the value of y is known exactly to be, say, Yq.

As a consequence, the state satisfies the equation

Cx= Yq and lies on the hyperplane as shown in

Fig. 2. If x is the present estimate of the state, the

estimate can be improved by projecting it along R
(M-IC) to the nearest point (with respect to

<., .>M) in the hyperplane containing x. This is

the basic projection step used with our observer.

The projection can be calculated in terms of Yq=

Q[y] to be

XUPdate - M-1C(CTM-IC)-I(y - yq)

( (2)

Let tk be the time at which a quantizer transition

occurs, and let yq be the corresponding transition

value. We define our observer by

:f=Ax+Bu, V tE;t:[tk]':~O

Xupdate - X - M-1C (CTM-1C) -I (y - yq), (13)

where the arrow "-" indicates a discrete update.

Next we will extend our methodology of the

design state observer for a MIMO linear system

with quantized outputs. The equation of the

observer based on the projection algorithm can be

expressed by

:f=Ax+Bu, V tE;t:[tk]':=O

xupdate - X - M-IC;( ClM-IC;) -I (y i-Yqi)'

VtE[tk]':=O, Vi=I,2, "', q, (14)

where CERnxq, i= 1,2, "', q is output numbers,

and M can be computed from ATM +MA = -1.
The case of a multi-output is to increase the

information of the outputs and the number of

projections. Intuitively, the estimation error of a

state observer based on the multiple outputs

should have an improved convergence rate rela­

tive to a single output system. In Eq. (14), tk i is

the time of the kth transition to the ith output.

When multiple quantizer transitions occur at the

same time, the respective projections are executed

in arbitrary order. More sophisticated schemes

can be derived for simultaneous transitions. How­

ever, for practical families of state trajectories

with associated probability measures, the proba­

bility of simultaneous transitions is zero.

4. Stability Analysis

In this section, we present an extension of

Lyapunov's second method for the investigation

of the stability of linear time-invariant systems

with resetting described by the projection algor­

ithm in the previous section. We first define a

solution to a differential equation with resetting

at time tk . Consider the differential equation with

resetting

i=!(x,t)

X(tk) -Xk, V k=O, I, "', n, (15)

where nE [R, co ], and there are finite t, in any

finite interval. Define x (t) be the caratheodory

solution to i =! (z. t), x (tk) <.x; on the interval

[tk' tk+I)· Then x(t) is defined on all of [to, =J,
provided ! (x, t) satisfies the assumption of

piecewise continuity in t and local Lipschitz

condition (Khalil, 1992). Define x (tk - ) = lim x
t-tk

(t). Lyapunov stability theory for systems of the

form (4) is easily generalized from standard

results. All that is required to deal with the

resetting, is to require that a Lyapunov function

not increase upon a reset. As an illustration, we

generalize theorem 4.1 of (Khalil, 1992). Let! (x,

t) be Lipschitz continuous on a domain D={xE

Rlllxli < z}, then we have the following.
Theorem 1 Consider system (4) where tk is a

finite or countable set of resetting times. Let x =

o be an equilibrium point of x = ! (x. t), and D

={xERlllxll< r}. Let v:- [0, co) <D>« R be a
continuously differential function such that

al (II V (t, x) ID s:; V (t, x) s:;az (11x1D (16)

av svat+ ax f i;», t) s:;-a3(llxll), V tE;t:{tk} (17)

V (x (tk, tk) - V (x (tk-), tk) s:;O, V tE{tk}'

V xED, (18)

where ai' az. and a3 are class K function defined
on [0. r). Then x = 0 is uniformly asymptotical­
ly stable.

Proof: See the reference (Khalil, 1992). The

only change in the proof required is that (18) III

addition (17) is required to show that V is

decreasing.•
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Corollary 1 If all of the assumptions of

the theorem 1 are satisfied with a, (y) = k.r". for

some positive constants k and c; then x = 0 is

exponentially stable. Moreover, if the assumption

holds globally, then x= 0 is globally exponential­

ly stable.

Note that we have not formally defined the

various kinds of stability for the differential equa­

tion with resetting, but the generalizations are so

slight that this is not required. Return now to the

combined plant observer systems:

i=Ax+Bu

y=Cx
yq=Q[y], (19)

.f=Ax+Bu

y=Cx
Xupdate +- X - M-1C(CTM-1C) -I (51 - yq).

(20)

Denote the state error e (t) = x (t) - x (t), then
we have the estimated error dynamics with dis­

continuity at quantization time t, as follows:

e=Ae, e(to) = eo, VtE{tk};~O

euPdate+- (J-P)e, VtE{tk};~O' (21)

where P=M-1CT(CM-1CT)-IC is the projec­

tion matrix. This error is characterized by the fact

that at times t, of quantizer transition it experi­

ences a sudden change and the estimated error

dynamics can be rewritten as

e =Ae- ~k~IPO(t-tk) e, V k= 1,2, ....

(22)

The solution of an error dynamics in Eq. (21) or

(22) can be expressed by

e t.t, to, eo)=aA(t-tk)rr7~1(J-P)eA.1tkeo,

'lit::::: to· (23)

Theorem 2 Suppose that there exists M T = M

> 0 such that A satisfies ATM +MA = -[

Then the origin of the system is exponentially

stable.

Proof Let V(t, e) =eTMe be a Lyapunov

function of system (21) or (22). Then for V (t.

e)ED, we have V(t, e)=-eTe=-lleI12
• For

V(t, e)EQk' where Q k is a discontinuous set at

quantized transition, we have V (tk' e) - V (tk,

e) = - (51 (tk) -Yq(tk» T(CTM-1C) -I (.9 (tk

- Yq (tk») :<::0. It follows that the estimated error

goes to zero exponentially.•

This proves the stability of the observer for the

linear time-invariant stable system with quant­

ized outputs. In the preceding theorem, the

Lyapunov function is monotonically decreasing

along the solutions of the system and is forced

down by discrete updates to converge to zero

more quickly as t tends to infinity. However, the

rate of convergence is hard to define since we can

not quantify the rate at which quantizer transi­

tions occur. In this case, the monotone property

of Lyapunov functions along solutions of the

system (23) no longer holds for unstable systems.

We need another condition for stability given in

the following theorem.

Theorem 3 The observer based on the projec­

tion algorithm (20) is exponentially stable if
there exist Pe.R":". ,1>0, and iJT>O such

that

eA'LlI. (J - P) TM (J - P) eA.1tk_ e?":M <0,

ViJ4:<::iJT (2~

where P=M-1C(CTM-1C)-ICTERnxn, and

At; are finite quantized time intervals.

Proof From the estimated error equation of

(20), the solution can be obtained by

e (t) = eAarr Z~o (J - P) eA.1/keo

where t=a+ ~Z~liJtk' 0 :<::a:<::iJtk+1 and iJtk=
tk+l-tk. Let V(k, e)=eT(k)lv!e(k) be a
Lyapunov function of system (20). Then the

Lyapunov function at italic font can be expressed

by

V(k+l, e)=e(k+I)TMe(k+l)
= e (k) TeA'Llt. (J - P) M (J - P) eAMke (tk)' (25)

Suppose that e A'Jt.(I ~ P) TM (1- P) e A .1t k

- «:":M <O. Then we have

eA'Llt.(J - P) TM (I - P) eA.1/k< e-AMkM

e (k) TeA'dt.(I - P) TM (I - P) eA.1t ke (k)

< er:":« (k) TMe (/.:)

V(k+ I, e) < «:": V(k, e)

V(k+ 1, e) < -A.1tk (26)
V(k, e) e .

Because lim V(k, e) converges to zero
k-=

exponentially. e (t) converges to zero exponential-
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lyas t -> 00.•

5. Application to Motor Control

We simulate the simple motor optical encoder

system modeled by

'073

operation decays faster than without the projec­

tion operation for a stable system case as shown

in Fig. 4. We also simulated an quantized motor

system using the projection operation and linear

observer. Figure 5 shows the case where the

quantizer and linear observer were used without

our methodology. The error of the state estima­

tion due to the quantization error is shown in Fig.

5. As shown in Fig. 6, the estimated angular

position and velocity of the closed-loop system

with an observer based upon the projection oper­

ation converge to the reference angular position

and velocity. This result shows that an observer of

an quantized motor system can be designed by

using the projection operation even if it has

quantized outputs. The projection approach for

designing the observer is easy and profitable for

systems with quantized outputs.

(27)

°1 B-s[J+[~Ju~ [~J=[:
yq=Q[B]

To assess the value of the projection operation

in our observer we consider the simple DC-motor

system with an optical encoder as shown in Fig.

3.

where B is angular position, (JJ is angular velocity,

and x, a, /3 are known coefficients of the DC

-rnotor (Friendland, 1986). The quantized out­

put from the encoder is yq = Q [B Uk) ], and is

used to calculate [e(tk ) , W(tk ) ] T in order to

reset the designed motor observer using results of

Sec. 2. The simulation results of the motor system

are shown in Figs. 4, 5 and 6. The estimated error

of the closed-loop system with the projection

Fig. 5 Simulated closed-loop states of DC-motor
with the quantizer and a linear observer.

'0B5
Timc.(llCC)
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3r-~~~~~~~~~~~~~~~~~-,

2

I'-0

i-,
>-2

Fig. 3 DC-motor driving inertia load.
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~-,

> -2

3r-~~~~~~~~~~~~~~~~~-,

2

2 4 5
Time, (sec)

B '0

Fig. 4 The state trajectories and estimated error of
stable DC-motor with and without pro-
jection and operation.

Fig. 6 Simulated closed-loop states DC-motor with
an observer based upon the projection algor­
ithm.
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6. Conclusion

The objective of this paper is to demonstrate

that a quantized measurement may be viewed

profitably as limited information to extract the

estimated state using the projection algorithm.

The quantized output measurement can be taken

into account explicity for the observer design. The

observer for the quantized output system has an

advantage that the estimated error approaches

zero as t --> co in spite of the limited output

information as shown in Theorems I, 2 and via

simulation results of the stable DC-motor exam­

ple. For quantized output systems, if the necessary

and sufficient condition for the observer design

(22) is satisfied, then the estimated error also goes

to zero as shown in figure 6. From these simula­

tion results, we may conclude that the observer

based on the projection algorithm offers many

advantages with minor increase in complexity.
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